CHI
2024
Xinru Wang, Hannah Kim, Zhengjie Miao, Kushan Mitra, Sajjadur Rahman
Large language models (LLMs) have shown remarkable performance across various natural language processing (NLP) tasks, indicating their significant potential as data annotators. Although LLM-generated annotations are more cost-effective and efficient to obtain, they are often erroneous for complex or domain-specific tasks and may introduce bias when compared to human annotations. Therefore, instead of completely replacing human annotators with LLMs, we need to leverage the strengths of both LLMs and humans to ensure the accuracy and reliability of annotations. This paper presents a multi-step human-LLM collaborative approach where (1) LLMs generate labels and provide explanations, (2) a verifier assesses the quality of LLM-generated labels, and (3) human annotators re-annotate a subset of labels with lower verification scores. To facilitate human-LLM collaboration, we make use of LLM’s ability to rationalize its decisions. LLM-generated explanations can provide additional information to the verifier model as well as help humans better understand LLM labels. We demonstrate that our verifier is able to identify potentially incorrect LLM labels for human re-annotation. Furthermore, we investigate the impact of presenting LLM labels and explanations on human re-annotation through crowdsourced studies.