
1

NLP in Real World Settings:
Healthcare & Program Synthesis

Ndapa Nakashole

13 July, 2023



2

Asking Health Questions

For labor induction, what is the medication that is
FDA approved for cervical ripening?

ChatGPT’s answer (GPT-3.5): Misoprostol
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The FDA says ...

Correct answer: Dinoprostone
(GPT-4 get is right)
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Transformer knowledge storage mechanism

▶ Where is the incorrect
belief stored?
⊙ Token embeddings?
⊙ Feedforward layers?
⊙ Attention layers?
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Transformer storage mechanism

Finding 1: Feed-forward layers in Transformer LMs emulate
key-value memories

Transformer feed-forward layers are key-value memories 
(Geva et al, 2021)

nonlinearity (𝞂)
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I have omitted bias terms, layer norm, residual connections.

Transformer feed-forward layers are key-value memories 
(Geva et al, 2021)
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I have omitted bias terms, layer norm, residual connections.

1[Geva et al.(2021)Geva, Schuster, Berant, and Levy]
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Modifying the memory

Eiffel Tower is located in the city of 
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Zooming in on an FF layer
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1Figure from: K. Guu
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Modifying the memory

Modifying the memory

input (x)

W1

nonlinearity (𝞂)

selector

W2

Intuition: modify columns of W2 to 
change model's behavior.

output (y)

Meng et al, 2022: apply a rank-1 update.
● W2  ← W2 + uvT    (u and v are vectors)
● Maximize probability of outputting Rome when we 

see "Eiffel Tower" selector.
● Minimize change in behavior of W2 on other inputs.

Subtract word vector for Paris, add 
word vector for Rome?
(Dai et al, 2021)

Editing approches are still in their infancy.

1Figure from: K. Guu
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Desired from the Transformer

▶ Attribution and interpretability
⊙ Trace a model’s knowledge back to a particular document or

training example

▶ Modular knowledge editing
⊙ Update the knowledge the model has access to without

breaking its behavior

▶ Efficient scaling
⊙ Increase the model’s memory size by 10x without paying 10x

more compute.
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Memory-Augmented Models
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The Memory Extender

▶ Allow LM to interact
with external memory
(search engine, DB,
etc):

▶ Thus supporting:
Editing of knowledge,
Attribution, Efficient
scaling

Many approaches have been proposed:
▶ Memory Networks
▶ REALM
▶ DPR
▶ LaMDA
▶ WebGPT
▶ ...
▶ RETRO
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Retrieval-Enhanced Transformer (RETRO), Borgeaud et al.
(ICML 2022)

Improving language models by retrieving
from trillions of tokens
Sebastian Borgeaud†, Arthur Mensch†, Jordan Ho�mann†, Trevor Cai, Eliza Rutherford, Katie Millican,
George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego de Las Casas,
Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Sa�ron Huang, Loren Maggiore, Chris Jones,
Albin Cassirer, Andy Brock, Michela Paganini, Geo�rey Irving, Oriol Vinyals, Simon Osindero,
Karen Simonyan, Jack W. Rae‡, Erich Elsen‡ and Laurent Sifre†,‡

All authors from DeepMind, †Equal contributions, ‡Equal senior authorship

We enhance auto-regressive language models by conditioning on document chunks retrieved from a
large corpus, based on local similarity with preceding tokens. With a 2 trillion token database, our
Retrieval-Enhanced Transformer (R����) obtains comparable performance to GPT-3 and Jurassic-1
on the Pile, despite using 25⇥ fewer parameters. After fine-tuning, R���� performance translates to
downstream knowledge-intensive tasks such as question answering. R���� combines a frozen B���
retriever, a di�erentiable encoder and a chunked cross-attention mechanism to predict tokens based on
an order of magnitude more data than what is typically consumed during training. We typically train
R���� from scratch, yet can also rapidly R����fit pre-trained transformers with retrieval and still
achieve good performance. Our work opens up new avenues for improving language models through
explicit memory at unprecedented scale.

1. Introduction
Language modelling (LM) is an unsupervised task that consists of modelling the probability of text,
usually by factorising it into conditional next-token predictions >(F1, . . . , F<) =

Œ
7 >(F7 |F<7). Neural

networks have proven to be powerful language models, first in the form of recurrent architectures
(Graves, 2013; Jozefowicz et al., 2016; Mikolov et al., 2010) and more recently in the form of
Transformers (Vaswani et al., 2017), that use attention to contextualise the past. Large performance
improvements have come from increasing the amount of data, training compute, or model parameters.
Transformers have been scaled from 100 million parameter models in seminal work to over hundred
billion parameters (Brown et al., 2020; Radford et al., 2019) in the last two years which has led to
models that do very well on a wide array of tasks in a zero or few-shot formulation. Increasing model
size predictably improves performance on a wide range of downstream tasks (Kaplan et al., 2020).
The benefits of increasing the number of parameters come from two factors: additional computations
at training and inference time, and increased memorization of the training data.

In this work, we endeavor to decouple these, by exploring e�cient means of augmenting language
models with a massive-scale memory without significantly increasing computations. Specifically, we
suggest retrieval from a large text database as a complementary path to scaling language models.
Instead of increasing the size of the model and training on more data, we equip models with the
ability to directly access a large database to perform predictions—a semi-parametric approach. At
a high level, our Retrieval Transformer (R����) model splits the input sequence into chunks and
retrieves text similar to the previous chunk to improve the predictions in the current chunk. Existing
retrieval for language modelling work only considers small transformers (100 millions parameters)
and databases of limited size (up to billions of tokens) (Guu et al., 2020; Khandelwal et al., 2020;
Lewis et al., 2020; Yogatama et al., 2021). To our knowledge, our work is the first to show the benefits
of scaling the retrieval database to trillions of tokens for large parametric language models. Our main

Corresponding authors: {sborgeaud|amensch|jordanho�mann|sifre}@deepmind.com
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2▶ Memory: a 2 trillion token database → comparable
performance to GPT-3 and others, but with 25× fewer
parameters

2

2[Borgeaud et al.(2022)Borgeaud, Mensch, Hoffmann, Cai, Rutherford, Millican, van den Driessche, Lespiau, Damoc, Clark, de Las Casas, Guy, Menick, Ring, Hennigan, Huang, Maggiore, Jones, Cassirer, Brock, Paganini, Irving, Vinyals, Osindero, Simonyan, Rae, Elsen, and Sifre]
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RETRO Method

▶ Construct a key-value
database, where values
store raw chunks of text
tokens

▶ Keys, values derived from a
frozen BERT

▶ Training sequences are
divided into chunks and
augmented with their
k-nearest neighbor chunks
from the database.

▶ Encoder-decoder ,integrates
retrieval chunks using
cross-attention

Improving language models by retrieving from trillions of tokens
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Figure 2 | R���� architecture. Left: simplified version where a sequence of length < = 12 is split
into : = 3 chunks of size ; = 4. For each chunk, we retrieve 9 = 2 neighbours of @ = 5 tokens each. The
retrieval pathway is shown on top. Right: Details of the interactions in the C�� operator. Causality is
maintained as neighbours of the first chunk only a�ect the last token of the first chunk and tokens
from the second chunk.

a new methodology to evaluate language models when an evaluation set is partially present in the
training set.

2.1. Training dataset
We use a multi-lingual version of MassiveText (Rae et al., 2021) for both training and retrieval data.
The dataset consists of text documents from multiple sources and multiple languages totalling over
5 trillion tokens (detailed in Table 1). Sequences are sampled from subsets of the training data,
with sampling weights given in the right-most column of Table 1. We tokenize the dataset using
SentencePiece (Kudo and Richardson, 2018) with a vocabulary of 128,000 tokens. During training
(unless otherwise specified), we retrieve from 600B tokens from the training data. The training
retrieval database is made of the same subsets as the training data, in proportion that matches
the training sampling frequencies. During evaluation the retrieval database consists in the full
union of these datasets, with the exception of books for which we use a sub-sample of 4%. The
evaluation retrieval database thus contains 1.75T tokens. To limit test set leakage, we compute the
13-gram Jaccard similarity between train and test documents using the MinHash scheme and remove
all training documents with high similarity (0.8 or higher) to a validation or test set document.
Additionally, we remove all validation and test articles from Wikitext103 (Merity et al., 2017) from
our Wikipedia training data.

2.2. Retrieval-enhanced autoregressive token models
Our approach uses retrieval as a way to augment input examples at the granularity of small chunks
of tokens. Formally, we consider sequences of integer tokens in V = [1, D], obtained using a text
tokenizer1. We split each <-token-long example - = (F1, . . . , F<) into a sequence of : chunks (⇠1, . . . , ⇠:)
of size ; = <

: , i.e. ⇠1 , (F1, . . . , F;), . . . , ⇠: ,(F<�;+1, . . . , F<) 2 V;. We use < = 2048 and ; = 64.
We augment each chunk ⇠C with a set R��D(⇠C) of 9 neighbours from the database D. R��D (or

1We use the notation [1, D] , {1, . . . , D} throughout the text.

3
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Design Considerations for Memory-Augmented Models

▶ What goes o the memories?
⊙ Documents, database records, training examples, etc

▶ How to use the retrieved memories?
⊙ "Text fusion", "label smearing"

▶ How to retrieve memories?
⊙ Use an off-the-shelf search engine
⊙ How to train your own memory retriever
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Case Study # 1: Healthcare QA
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Memory models for Healthcare QA

▶ Our memory representation: Question-Answer pairs (ACL
2021, Mrini et al)

▶ QA pairs are concise, and also tend to express importation
information
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Consumer Health Question (CHQ) Answering

(CHQ) I am a new mother, blessed with a beautiful baby just
a few weeks ago. While this journey has been an incredible one
filled with love and joy, it’s also been quite overwhelming at
times. I am concerned about postpartum depression (PPD) as
I might have it. I’m unsure about its exact causes and would
really appreciate if someone could provide more clarity on this.

(FAQ) What is the physiological basis for postpartum depres-
sion?
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Approach

▶ Approach: Key: FAQ; Value: FAQ
answers

▶ For CHQ, an answer is obtained via
label smearing

▶ A multi-task learning approach for
CHQs, summarize and match
perform matching via question
entailment

▶ Encoder-decoder
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summarization pair. If it is not an entailment case,
then we have: (3) , question F is not a summary
of question C if and only if question C does not
entail question F (4). Therefore, to create an equiv-
alent RQE pair labeled as not entailement, the RQE
CHQ is identical to the CHQ of the summarization
pair, and the RQE FAQ is randomly selected from
a distinct question pair from the same dataset split.

Inversely, for the RQE dataset, we create equiva-
lent summarization pairs. For each existing RQE
pair, we consider two cases. If the RQE pair is
labeled as entailment, we create an identical sum-
marization pair. If the RQE pair is labeled as not
entailment, then following (4), we create a summa-
rization pair that is identical to a randomly selected
and distinct RQE pair labeled as entailment from
the same dataset split.

3.3 Simultaneous Multi-Task Learning

Previous work on multi-task learning with sum-
marization and entailment (Pasunuru et al., 2017;
Guo et al., 2018) optimize for the objectives of the
different tasks by alternating between them. This
alternating multi-task training follows a ratio be-
tween the different tasks, that depends on the size
of the dataset of each task (e.g. a ratio of 10:1
means training for 10 batches on one task, and then
for 1 batch on the other task). In our approach, we
propose to optimize simultaneously for the objec-
tives of both tasks. We do not use ratios, as we are
not alternating between objectives and the resulting
datasets from our data augmentation algorithm are
of equal size.

Whereas many previous multi-task settings
chose generation tasks (entailment generation and
question generation), we choose the BART Large
architecture (Lewis et al., 2019) as it enables to
optimize for a classification task (RQE) and a gen-
eration task (summarization) using the same ar-
chitecture. In addition, BART is adequate as it
achieves very strong results in benchmark datasets
of recognizing textual entailment and abstractive
summarization. The input works differently be-
tween both tasks. For summarization, the encoder
takes the CHQ as input and the decoder takes the
FAQ as input. For RQE, both the encoder and de-
coder take the entire RQE pair as input. We add a
classification head for RQE, to which we feed the
last decoder output, as it attends over all decoder
and encoder positions. We show an overview of
our architecture in Figure 2.

Shared 
Encoder

Decoder Decoder

FAQ CHQ; FAQ

CHQ; FAQCHQ

Recognizing Question 
Entailment (RQE)
Classification Task

Question 
Summarization
Generation Task

Classification 
Head

Cross-Entropy 
Loss

Negative 
Log-Likelihood 

Loss

Gradually Soft 
Parameter-Sharing 

Loss

Figure 2: Overview of the architecture of our proposed
gradually soft multi-task and data-augmented model.
The gradually thinning links between decoder layers
represent the loosening parameter-sharing constraint.

We propose to optimize a single loss function
that combines objectives of both tasks. Our loss
function is the weighted sum of the negative log-
likelihood summarization objective, and the binary
cross-entropy classification objective of RQE.

More formally, given a CHQ embedding x, the
corresponding FAQ embedding y, and the entail-
ment label lentail 2 {0, 1}, we optimize the follow-
ing multi-task learning loss function:

LMTL(✓) = � � ⇤ logp(y|x; ✓)

+ (1 � �) ⇤ BCE ([x;y] , lentail; ✓)

(1)

where BCE is binary cross entropy, and � is a hy-
perparameter between 0 and 1.

3.4 Gradually Soft Parameter-Sharing

In multi-task learning, there are two widely used
approaches: hard parameter-sharing and soft
parameter-sharing. Guo et al. (2018) propose soft
parameter-sharing for all parameters except the first
layer of the encoder and last layer of the decoder.
Liu et al. (2019) introduce MT-DNN and show that

ROUGE and human evaluation show effectiveness of approach &
BioNLP shared task system submission placed competitively
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QA-retrieval limitations

Compositional Questions (-): Using label smearing percludes
answering questions that can be solved with > 1 QA-pairs.

▶ What are the primary causes of infertility in women that can
be addressed through preventive measures
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Work addressing compositional questions with QA-pair
memories

▶ QA Is the New Knowledge Representation: Question-Answer
Pairs as Knowledge Bases
[Chen et al.(2022a)Chen, Cohen, Jong, Gupta, Presta, Verga, and Wieting]

▶ Augmenting Pre-trained Language Models with QA-Memory
for Open-Domain Question Answering
[Chen et al.(2022b)Chen, Verga, Jong, Wieting, and Cohen]

⊙ To answer q′, retrieve related QA pairs (q1, a1) , . . . , (qk , ak)
⊙ Combine retrieved QA pairs with original question q′.
⊙ Transformer to fuse this information and generate an answer

▶ Effective usage of retrieved memories is an open problem
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Memory Augmented Models: Summary

▶ Memory augmented models have attributes that make them
particularly suitable for high-stakes domains

▶ Attribution to sources, editing, memory scale, efficient QA

Open questions:
▶ Choice of knowledge representation (entity embeddings?

passages? QA pairs? ...)
▶ Effective usage of memories
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Role of ChatGPT in Healthcare QA

▶ Generalization from fewer labeled examples; Conversational
interface; Multimodaliy;

2
https://hai.stanford.edu/news/how-foundation-models-can-advance-ai-healthcare

https://hai.stanford.edu/news/how-foundation-models-can-advance-ai-healthcare
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Case Study # 2: Programming
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What is Program Synthesis?

▶ Program Synthesis: given a natural language specification,
generate the corresponding computer program
⊙ Improve programmer productivity

⊙ Make software development more accessible to non-experts

⊙ Enable rapid prototyping
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Example: Plotting

Visualizing data and functions
▶ Task: Update plot from a natural language utterance

PlotterUtterance

plot action

KB
Knowledge
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Learning Task

Utterance: “use the log scale for the X-axis"

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2019 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) (b)

Figure 1: Illustration of two of the supported plot types, showing some of their slots (a) plot type “3d surface”. (b)
Plot type “line chart”.

listings xcolor

1 import matplotlib.pyplot as plt
2 plt.plot(...)
3 plt.xscale(’log’)
4 plt.show()

While this request is achieved by a single line
of code, line 3, some natural language requests
require multiple lines of code and involve multi-
ple slots. Figure ?? and Figure ?? illustrate the
slots of a line chart, and a 3d surface plot, respec-
tively. Illustrations of all supported plot types and
their slots are in the supplementary material. Table
1 lists all supported plot types and corresponding
slots.

3.2 Plot Specifications
To facilitate labeled data collection, and plot up-
dates by an agent, we make use of structured rep-
resentations which we call text plot specifications.

Definition 3 (Text Plot Specification, TPSpec)
Let St be the set of all relevant slots for
a given plot type,t, where t takes on plot
type values such as histogram, or scatter.
Each slot si 2 St can take on values in
Vt

i . A TPSpec of plot type t is given by:
T Pt = {(s1 : v1, s2 : v2, . . .) : si 2 St; vi 2 Vt

i }
Thus a TPSpec is a structured text representation
of a plot. There is a deterministic mapping from
TPSpecs to plot images. However, in addition we
consider vision to be a second modality for plot
specifications.

Definition 4 (Plot Image) A plot image is an im-
age that represents a given plot. Plot images are

in Portable Network Graphics (PNG) format.

3.3 Input and Output Formats

Dialog history is available in our dataset, thus we
can treat the dialog task in a turn-based manner,
that is we can treat each turn in a dialog is a sep-
arate datapoint. For each turn, the input comes
from three sources: i) current state as represented
by the text plot specification (TPSpec), ii) current
state as represented by the plot image, and iv) the
dialog history in the form of previous and current
utterances. The output is a textual plot specifica-
tion of the updated plot.

4 Data Collection

In this paper, we focus on the Python plotting li-
brary, matplotlib. Our data collection pipeline
consists of two steps. First, we generate a set of
plots. Second, we collect conversations on these
plots.

4.1 Plot Generation

To generate plots for data collection, we make use
of Text Plot Specifications (TPSpecs). There is
a one-to-one mapping between TPSpecs and plot
images. Therefore, to generate plots for use in col-
lecting plot dialog, we only need to generate TP-
Specs. Specifically, for each plot type t, for all
relevant slots si 2 St, we design a value pool
Pt

i ✓ Vt
i . The value pools are designed to be large

to increase the diversity of our plot set. We en-
sure that the difference between a pair of values
in the same pool is obvious enough so that crowd
workers can clearly describe the plots using natu-

▶ Conversational: plots can be specified in multiple-turns
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Plot manipulation question: fonts
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Plot manipulation question: vertical lines
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Plot manipulation question (3/3): invert y-axis



29

Conversational Plotting Agent

▶ A conversational plotting agent
⊙ Knowledgable: has access to relevant knowledge
⊙ Conversational: plots can be specified in multiple-turns

▶ Framed it as a problem of goal-oriented dialog
⊙ Slot-filling: fixed symbolic state representation
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Slots: Line Chart
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Slots: Pie Chart
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Slots: 3D Surface



33

Shared Slots
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Plot Types Slots
1. Axes Polarize, X-axis Scale, Y-axis Scale, X-axis Position, Y-axis Position, Invert X-axis, Invert Y-axis,

Grid Line Type, Grid Line Style,Grid Line Width, Grid Line Color, Font Size
2. 3D Surface Color map, Invert X-axis, Invert Y-Axis, Invert Z-Axis
3. Bar Chart Bar Orientation, Bar Height, Bar Face Color, Bar Edge Width, Bar Edge Color, Show Error Bar,

Error Bar Color, Error Bar Cap Size, Error Bar, Cap Thickness, Data Series Name
4. Contour/Filled Contour Plot Type, Number of levels, Color Map, Color Bar Orientation, Color Bar

Length, Color Bar Thickness
5. Contour/Lined Contour Plot Type, Lined Style, Line Width
6. Histogram Number of Bins, Bar Relative Width, Bar Face Color, Bar Edge Width, Bar Edge

Color, Data Series Name
7. Matrix Color Map, Invert X-axis, Invert Y-axis
8. Line Chart Line Style, Line Width, Line Color, Marker Type, Marker Size, Marker Face Color,

Marker Edge Color, Marker Interval, Data Series Name, Show Error Bar, Error Bar Color,
Error Bar Cap Size, Error Bar Cap Thickness

9. Pie Chart Exploding Effect, Precision Digits, Percentage tags’ distance from center,
Label tag’s distance from center, Radius, Section Edge Width, Section Edge Color

10. Polar Polarize, Grid Line Type, Grid Line Style, Grid Line Width, Grid Line Color, Font Size
11. Scatter Polarize, Marker Type, Marker Size, Marker Face Color, Marker Edge Width, Marker Edge Color,

Color Map, Color Bar Orientation, Color Bar Length Color Bar Thickness
12. Streamline Density, Line Width, Line Color, Color Map, Arrow Size, Arrow Style

Table: Types and slots: all Matplotlib plot types are supported
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Model
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Model Performance
(Shao, & Nakashole, ACL 2020)

▶ ⊙ Human Performance: 80.6
⊙ our Model: 61.3
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LLMs that Code
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ChatGPT Matplotlib(1/3): fonts
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ChatGPT Matplotlib(2/3): vertical lines
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ChatGPT Matplotlib(2/3): vertical lines: code works!
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ChatGPT Matplotlib (3/3): invert y-axis
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ChatGPT Matplotlib (3/3): invert y-axis, code works!
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ChatGPT brings

▶ Generalization ... not just Matplotlib, and not just Python

▶ e.g., Tikz

x1

x2

x3

x4

milk

Hidden
Layer 1

human
infants
eat

Hidden
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Output
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OpenAI Codex: behind GitHub Copilot

Evaluating Large Language Models Trained on Code

Mark Chen * 1 Jerry Tworek * 1 Heewoo Jun * 1 Qiming Yuan * 1 Henrique Ponde de Oliveira Pinto * 1

Jared Kaplan * 2 Harri Edwards 1 Yuri Burda 1 Nicholas Joseph 2 Greg Brockman 1 Alex Ray 1 Raul Puri 1

Gretchen Krueger 1 Michael Petrov 1 Heidy Khlaaf 3 Girish Sastry 1 Pamela Mishkin 1 Brooke Chan 1

Scott Gray 1 Nick Ryder 1 Mikhail Pavlov 1 Alethea Power 1 Lukasz Kaiser 1 Mohammad Bavarian 1

Clemens Winter 1 Philippe Tillet 1 Felipe Petroski Such 1 Dave Cummings 1 Matthias Plappert 1

Fotios Chantzis 1 Elizabeth Barnes 1 Ariel Herbert-Voss 1 William Hebgen Guss 1 Alex Nichol 1 Alex Paino 1

Nikolas Tezak 1 Jie Tang 1 Igor Babuschkin 1 Suchir Balaji 1 Shantanu Jain 1 William Saunders 1

Christopher Hesse 1 Andrew N. Carr 1 Jan Leike 1 Josh Achiam 1 Vedant Misra 1 Evan Morikawa 1

Alec Radford 1 Matthew Knight 1 Miles Brundage 1 Mira Murati 1 Katie Mayer 1 Peter Welinder 1

Bob McGrew 1 Dario Amodei 2 Sam McCandlish 2 Ilya Sutskever 1 Wojciech Zaremba 1

Abstract

We introduce Codex, a GPT language model fine-
tuned on publicly available code from GitHub,
and study its Python code-writing capabilities.
A distinct production version of Codex powers
GitHub Copilot. On HumanEval, a new evalua-
tion set we release to measure functional correct-
ness for synthesizing programs from docstrings,
our model solves 28.8% of the problems, while
GPT-3 solves 0% and GPT-J solves 11.4%. Fur-
thermore, we find that repeated sampling from the
model is a surprisingly effective strategy for pro-
ducing working solutions to difficult prompts. Us-
ing this method, we solve 70.2% of our problems
with 100 samples per problem. Careful investiga-
tion of our model reveals its limitations, including
difficulty with docstrings describing long chains
of operations and with binding operations to vari-
ables. Finally, we discuss the potential broader
impacts of deploying powerful code generation
technologies, covering safety, security, and eco-
nomics.

*Equal contribution
1OpenAI, San Francisco, California, USA.
2Anthropic AI, San Francisco, California, USA. Work per-

formed while at OpenAI.
3Zipline, South San Francisco, California, USA. Work per-

formed while at OpenAI.
Correspondence to: Mark Chen <mark@openai.com>,

Jerry Tworek <jt@openai.com>, Heewoo Jun <hee-
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1. Introduction
Scalable sequence prediction models (Graves, 2014;
Vaswani et al., 2017; Child et al., 2019) have become a
general-purpose method for generation and representation
learning in many domains, including natural language pro-
cessing (Mikolov et al., 2013; Sutskever et al., 2014; Dai &
Le, 2015; Peters et al., 2018; Radford et al., 2018; Devlin
et al., 2018), computer vision (Van Oord et al., 2016; Menick
& Kalchbrenner, 2018; Chen et al., 2020; Bao et al., 2021),
audio and speech processing (Oord et al., 2016; 2018; Dhari-
wal et al., 2020; Baevski et al., 2020), biology (Alley et al.,
2019; Rives et al., 2021), and even across multiple modali-
ties (Das et al., 2017; Lu et al., 2019; Ramesh et al., 2021;
Zellers et al., 2021). More recently, language models have
also fueled progress towards the longstanding challenge
of program synthesis (Simon, 1963; Manna & Waldinger,
1971), spurred by the presence of code in large datasets
(Husain et al., 2019; Gao et al., 2020) and the resulting pro-
gramming capabilities of language models trained on these
datasets (Wang & Komatsuzaki, 2021). Popular language
modeling objectives like masked language modeling (Devlin
et al., 2018) and span prediction (Raffel et al., 2020) have
also been adapted to train their programming counterparts
CodeBERT (Feng et al., 2020) and PyMT5 (Clement et al.,
2020).

Similarly, our early investigation of GPT-3 (Brown et al.,
2020) revealed that it could generate simple programs from
Python docstrings. While rudimentary, this capability was
exciting because GPT-3 was not explicitly trained for code
generation. Given the considerable success of large lan-
guage models in other modalities and the abundance of
publicly available code, we hypothesized that a specialized
GPT model, called Codex, could excel at a variety of coding
tasks. This paper describes several early Codex models,
whose descendants power GitHub Copilot and the Codex
models in the OpenAI API.
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▶ Early analysis suggested GPT-3 could generate programs from
Python docstrings

▶ Despite the fact that GPT-3 was not trained for code
generation

3

3[Chen et al.(2021)Chen, Tworek, Jun, Yuan, Pinto, Kaplan, Edwards, Burda, Joseph, Brockman et al.]
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Codex

▶ Synthesis challenge: given a Python docstring, generate the
function implementation

Evaluating Large Language Models Trained on Code

Figure 2. Three example problems from the HumanEval dataset, where the probabilities that a single sample from Codex-12B passes unit
tests are 0.9, 0.17, and 0.005. The prompt provided to the model is shown with a white background, and a successful model-generated
completion is shown in a yellow background. Though not a guarantee for problem novelty, all problems were hand-written and not
programmatically copied from existing sources. Random problems and samples can be found in Appendix B.

passes the unit tests, and the total fraction of problems
solved is reported. However, computing pass@k in this
way can have high variance. Instead, to evaluate pass@k,
we generate n � k samples per task (in this paper, we
use n = 200 and k  100), count the number of correct
samples c  n which pass unit tests, and calculate the
unbiased estimator

pass@k := E
Problems

"
1 �

�
n�c

k

�
�
n
k

�
#

(1)

Calculating this estimator directly results in very large num-
bers and numerical instability. In Figure 3, we include a
numerically stable numpy implementation that simplifies
the expression and evaluates the product term-by-term. One
may be tempted to estimate pass@k with 1�(1� p̂)k where
p̂ is the empirical estimate of pass@1, but we show that it is
biased in Appendix A.

def pass_at_k(n, c, k):
"""
:param n: total number of samples
:param c: number of correct samples
:param k: k in pass@$k$
"""
if n - c < k: return 1.0
return 1.0 - np.prod(1.0 - k /

np.arange(n - c + 1, n + 1))

Figure 3. A numerically stable script for calculating an unbiased
estimate of pass@k.

Later, we provide evidence that BLEU score may not be
a reliable indicator of functional correctness by showing
that functionally inequivalent programs generated by our
model (which are guaranteed to disagree with the reference
solution on some input) often have higher BLEU scores than
functionally equivalent ones.
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Evaluating Large Language Models Trained on Code

Figure 1. Pass rates of our models on the HumanEval dataset as a
function of model size. When a single sample is generated for each
problem, GPT-12B solves no problems, but Codex (fine-tuned
on code) solves 28.8% of the problems, and Codex-S (further
fine-tuned on correctly implemented standalone functions) solves
37.7% of the problems. From here, further gains can be realized by
generating 100 samples per problem and selecting the sample with
the highest mean log-probability (44.5% solved) or by selecting
the sample that passes the unit tests (77.5% solved). All samples
are generated with temperature 0.8.

In this work, we focus on the task of generating stan-
dalone Python functions from docstrings, and evaluate the
correctness of code samples automatically through unit
tests. This is in contrast to natural language generation,
where samples are typically evaluated by heuristics or by
human evaluators. To accurately benchmark our model,
we create a dataset of 164 original programming problems
with unit tests. These problems assess language compre-
hension, algorithms, and simple mathematics, with some
comparable to simple software interview questions. We
release this data along with an evaluation framework at
https://www.github.com/openai/human-eval.

To solve a problem in our test set, we generate multiple
samples from the models, and check if any of them pass the
unit tests. With just a single sample, a 12B parameter Codex
solves 28.8% of these problems, and a 300M parameter
Codex solves 13.2% of these problems. In contrast, the 6B
parameter GPT-J (Wang & Komatsuzaki, 2021) achieves
11.4% on the same dataset, while all GPT models achieve
near 0%. To improve our model’s performance at the task of
function synthesis from docstrings, we fine-tune Codex on
standalone, correctly implemented functions. The resulting
model, Codex-S, solves 37.7% of problems with a single
sample. Figure 2 showcases problems of varying difficulty
in our dataset, along with correct model generated solutions.

Real-world programming tasks often involve iterations of
approaches and bug fixes, which is approximated by gener-
ating many samples from our models and selecting one that
passes all unit tests. Within 100 samples, Codex-S is able to

generate at least one correct function for 77.5% of the prob-
lems. This result suggests that accurate code samples can
be selected via heuristic ranking instead of fully evaluating
each sample, the latter of which may not be possible or prac-
tical in deployment. Indeed, we find that the sample with
highest mean log-probability passes unit tests for 44.5% of
the problems.

We conclude by discussing the limitations and potential
broader impacts of these Codex models and of increasingly
powerful code generating models more generally.

2. Evaluation Framework
In this section, we discuss the details of our evaluation
framework. We begin by defining the pass@k metric, and
explain its advantages over standard match-based metrics.
Next, we describe the dataset of hand-written problems,
called “HumanEval,” which we created in order to bench-
mark our models. Finally, we discuss the sandbox environ-
ment we used to safely execute model-generated code.

2.1. Functional Correctness

Generative models for code are predominantly benchmarked
by matching samples against a reference solution, where
the match can be exact or fuzzy (as in BLEU score). How-
ever, recent work has surfaced deficiencies in match-based
metrics for code. For instance, Ren et al. (2020) finds that
BLEU has problems capturing semantic features specific
to code, and suggests several semantic modifications to the
score.

More fundamentally, match-based metrics are unable to ac-
count for the large and complex space of programs function-
ally equivalent to a reference solution. As a consequence,
recent works in unsupervised code translation (Lachaux
et al., 2020) and pseudocode-to-code translation (Kulal et al.,
2019) have turned to functional correctness instead, where
a sample is considered correct if it passes a set of unit tests.
We argue that this metric should be applied to docstring-
conditional code generation as well.

Perhaps the most convincing reason to evaluate functional
correctness is that it is used by human developers to judge
code. A framework known as test-driven development dic-
tates that software requirements be converted into test cases
before any implementation begins, and success is defined
by a program that passes these tests. While few organiza-
tions employ full test-driven development, integration of
new code is usually dependent on creating and passing unit
tests.

Kulal et al. (2019) evaluate functional correctness using
the pass@k metric, where k code samples are generated
per problem, a problem is considered solved if any sample

▶ GPT-3 fails on all problems
▶ Fine-tuning on problems with this format of function synthesis

(Codex-S) improves performance
▶ Sampling 100 programs, reranking and choosing best improves
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Competition-level code generation with AlphaCode
Yujia Li*†, David Choi*†, Junyoung Chung†, Nate Kushman†, Julian Schrittwieser†, Rémi Leblond†,
Tom Eccles†, James Keeling†, Felix Gimeno†, Agustin Dal Lago†, Thomas Hubert†, Peter Choy†,
Cyprien de Masson d’Autume†, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
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Programming is a powerful and ubiquitous problem-solving tool. Systems that can assist programmers
or even generate programs themselves could make programming more productive and accessible.
Recent transformer-based neural network models show impressive code generation abilities yet still
perform poorly on more complex tasks requiring problem-solving skills, such as competitive
programming problems. Here, we introduce AlphaCode, a system for code generation that achieved
an average ranking in the top 54.3% in simulated evaluations on recent programming competitions on
the Codeforces platform. AlphaCode solves problems by generating millions of diverse programs using
specially trained transformer-based networks and then filtering and clustering those programs to a
maximum of just 10 submissions. This result marks the first time an artificial intelligence system has
performed competitively in programming competitions.

A
utomatically creating programs given a
high-level description ofwhat they should
do is a long-standing task in computer
science (1, 2). Creating an artificial intel-
ligence (AI) system that can solve un-

foreseen problems by generating code from
problem descriptions is a challenge that both
affords a greater understanding of problem
solving and reasoning (3) and leads to impor-
tant applications, such as improving program-
mer productivity (4) and education (5).
Generating code that solves a specified task

requires searching in the enormous space of
all possible character sequences, only a tiny
portion of which corresponds to valid and cor-
rect programs. Furthermore, single character
edits can completely change programbehavior
or even cause crashes, and each task hasmany
valid solutions that may be drastically differ-
ent. These challenges make learning to gener-
ate correct programs difficult.Most prior work
has been limited to either restricted domain-
specific programming languages (6) or short
code snippets (7, 8). Perhaps the best-known
examples of program synthesis are Flash Fill
(6), which synthesizes programs from input
and output examples to automatically fill in
data in Microsoft Excel, and code comple-
tion tools common in integrated development
environments, which boost programmer pro-
ductivity (9, 10).
Contrasting with the conceptually more

complex systems used in most of program syn-
thesis history, recent large-scale transformer-
based (11) language models [which achieve
impressive performance generating text (12)]
can, with minimal modification, solve simple

programming problems in Python (13, 14). A
stripped-down version of ourmodel performs
similarly to these prior works (table S13). How-
ever, those problems consist mostly of simple
task descriptions with short solutions, and
solving them often amounts to translating a
sequence of steps (e.g., adding together all
even numbers in a list) directly into code. In
contrast, generating entire programs often
relies on understanding the task (e.g., win a
board game), reasoning out the appropriate
algorithm to solve it, and then writing the
code to implement that algorithm.
Solving competitive programming problems

(Fig. 1A) represents a big step forward. It re-
quires understanding complex natural lan-
guage descriptions, reasoning about previously
unseen problems instead of simplymemorizing
code snippets, mastering a wide range of algo-
rithms and data structures, and precisely im-
plementing submissions that can span hundreds
of lines. To evaluate these submissions (Fig. 1B),
they are executed on an exhaustive suite of
hidden tests and checked for execution speed
and correctness on edge cases. Feedback is
minimal; the submission is correct only if it has
the correct output on all hidden tests, otherwise
it is incorrect. Hidden tests are not visible to

the submitter, who must instead write their
own tests or rely on the trivial example tests for
debugging. Because competitors are allowed
to draw on solutions and algorithms from
previous contests, challenging new problems
are created for each competition. Competitive
programming is very popular; events such as the
International Collegiate Programming Com-
petition (15) and the International Olympiad
in Informatics (16) date back to the 1970s and
are some of the most prestigious competitions
in computer science, drawing hundreds of
thousands of participants from around the
world. Using problems that humans find chal-
lenging from battle-tested competitions pro-
vides a robust and meaningful benchmark for
many aspects of intelligence.
Early work using program synthesis for com-

petitive programming has shown that large
transformer models can achieve low single-
digit solve rates (13, 17). In contrast, we created
a code generation system named AlphaCode
that manages to solve 29.6% of test set held-
out competitive programming problems in a
dataset we released named CodeContests,
using at most 10 submissions per problem
(comparable to humans). A key driver of
AlphaCode’s performance came from scaling
the number of model samples to orders of
magnitude more than previous work; the
overall solve rate scaled log-linearly with the
number of samples generated, even when only
10 of them were submitted, a sample scaling
law similar to those found for training com-
pute and model size (12).
When evaluated on simulated program-

ming competitions hosted on the popular
Codeforces platform (18), AlphaCode achieved
an average ranking within the top 54.3% of
humanparticipants (a small, selected subset of
all programmers). To the best of our knowl-
edge, a computer system has never before
achieved such a competitive level in program-
ming competitions.

Learning system

Our system (Fig. 2) was designed to address
the main challenges of competitive program-
ming: (i) searching in the huge space of pro-
grams, (ii) access to only ~13,000 example tasks

RESEARCH

Li et al., Science 378, 1092–1097 (2022) 9 December 2022 1 of 6

DeepMind, London, UK.
*Corresponding author. Email: yujiali@deepmind.com (Y.L.);
davidhchoi@deepmind.com (D.C.); vinyals@deepmind.com (O.V.)
†These authors contributed equally to this work.

Table 1. AlphaCode’s results on Codeforces competitions. For each contest, we show the
estimated percent ranking (lower is better) using simulated time and incorrect submission penalties,
as well as the best and worst possible rankings using minimum and maximum time penalties,
averaged over three evaluations. Percents are how many users performed better than AlphaCode.
AlphaCode achieved an overall ranking in the top 54.3% averaged across the 10 contests.

Contest ID 1591 1608 1613 1615 1617 1618 1619 1620 1622 1623 Average

Maximum 43.5% 43.6% 59.8% 60.5% 65.1% 32.2% 47.1% 54.0% 57.5% 20.6% 48.4%
Estimated 44.3% 46.3% 66.1% 62.4% 73.9% 52.2% 47.3% 63.3% 66.2% 20.9% 54.3%
Minimum 74.5% 95.7% 75.0% 90.4% 82.3% 53.5% 88.1% 75.1% 81.6% 55.3% 77.2%

. .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... ..... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ..

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of C

alifornia San D
iego on M

ay 26, 2023

▶ In 2022, DeepMind published AlphaCode, a system combining
& expanding these ideas to solve competitive programming
problems
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AlphaCode: Pipeline

problemsubmissions contained inCodeContests,
providing an additional training signal and
allowing the use of incorrect submission data
that might otherwise mislead the model.
5) Generation by off-policy learning from

demonstrations (GOLD): The CodeContests
training set contains hundreds of solutions
for each problem. The standard cross-entropy
next-token prediction loss would put equal
weight on all solutions. A successfulmodel, how-
ever, only needs to generate a single correct
solution for each problem. To resolve this dis-
crepancy, we adopted a variation of GOLD (26),
an offline reinforcement learning (RL) algo-
rithm that focuses training on the most likely
solutions for each problem instead of all pos-
sible solutions.
At sampling time, the diversity of samples

was important, so that the millions of samples
for each problem could effectively explore the
space of possible solutions. As in another pub-
lication (27), we ensured sample diversity by
using a high temperature and conditioning
samples on random metadata: problem diffi-
culty ratings, problem tags (which indicate
which techniques a solution might use), and
solution programming language.

To select the 10 best samples for submis-
sion, we applied filtering and clustering to ob-
tain a small number of candidate submissions
on the basis of their programbehavior. Filtering
executed samples using example tests included
in the problem statement and removed samples
that failed those tests. This filtering removed
~99% of model samples. The possibly tens of
thousands of candidate samples that remained
were then clusteredby executing themon inputs
generated by a separate transformer model
trained to do test input generation and by
grouping together programs that produced the
same outputs on the generated inputs.We then
picked one sample from each of the 10 largest
clusters for submission, approximately themost
likely program behaviors from our model. In-
tuitively, correct programs would behave the
same and form large clusters, but incorrect
programs could fail in many different ways.

Evaluation

To assess the performance of AlphaCode, we
evaluated it against programming compe-
titions from the Codeforces platform (18).
Compared with reporting the solve rate on a
dataset, this evaluation avoids dataset assum-

ptions and weaknesses that could skew results
and allows us to benchmark against the best
performers on this task–human competitors.
We ensembled our 41 billion (41B) and 9 bil-

lion (9B) parameter models by pooling their
samples and then evaluated the ensemble on
all Codeforces competitions from 1 December
2021 to 28 December 2021 with >5000 par-
ticipants per contest, a total of 10 competitions
that we believe are a representative sample of
Codeforces contests. For each contest, we sim-
ulated running AlphaCode live, generating
samples for each problem, filtering with ex-
ample tests (28), and clustering to get candidate
submissions. We submitted these candidates
to the Codeforces platform and computed
AlphaCode’s placement in each contest (Table 1).
After the first run, we repeated this procedure
two more times to measure variance.
Overall, our systemachieved an average rank-

ing in the top 54.3% when limited to 10 sub-
missions per problem, although 66% of solved
problems were solved with the first submis-
sion. This performance in competitions approx-
imately corresponds to a novice programmer
with a fewmonths to a year of training (see SM
text section G). To the best of our knowledge,

Li et al., Science 378, 1092–1097 (2022) 9 December 2022 3 of 6
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Fig. 2. Overview of AlphaCode. (A) In pretraining, files from GitHub are randomly split into two parts. The first part goes to the encoder as input, and the decoder
is trained to produce the second part. (B) In fine-tuning, problem descriptions (formatted as comments) are given to the encoder, and the decoder is trained to
generate the solutions. (C) For evaluation, AlphaCode generates many samples for each problem description, then it executes them to filter out bad samples and
cluster the remaining ones before finally submitting a small set of candidates.
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AlphaCode: Ranking among contest participants

Competition-Level Code Generation with AlphaCode

(a) AlphaCode’s ranking in 10 contests (b) AlphaCode’s estimated rating

Figure 1 | AlphaCode’s ranking on 10 simulated Codeforces contests and estimated rating (right
is better). AlphaCode ranked in the top 54.3% among contest participants averaged over 10 contests,
and achieved an estimated average rating of 1238. (a) shows the rating of participants (y-axis) and
their rankings in each contest (x-axis), as well as AlphaCode’s ranking for each of the 10 contests. (b)
shows the estimated rating of AlphaCode among users who have participated in at least 1 contest in
the last 6 months. AlphaCode’s estimated rating of 1238 is greater than 72% of these users.

the metrics defined on them prone to high false positive rates (with 30% or more programs which
pass all tests but are not actually correct), and therefore unreliable for measuring research progress.
In this paper we present AlphaCode, a code generation system applied to solving competitive pro-
gramming problems. We use large transformer language models to generate code, pre-training them
on selected GitHub code and fine-tuning on our curated set of competitive programming problems.
For each unseen problem we generate a large set of program samples, filter them based on execution
results on example tests from the problem description, then cluster the remaining samples to obtain a
small set of candidates to be submitted for evaluation. We describe AlphaCode in detail in Section 4.
A core part of developing our system was ensuring that submissions are rigorously evaluated and
that evaluation problems are truly unseen during training, so di�cult problems cannot be solved
by copying from the training set. Towards this goal, we release a new training and evaluation
competitive programming dataset, CodeContests1 (Section 3). This dataset combines data from
various sources, splits temporally so all training data predates all evaluation problems, adds additional
generated tests to ensure correctness, and evaluates submissions in a setting that mirrors that of
competitive programming. In our evaluation (Section 3.2.1), CodeContests reduces the false positive
rate from 30-60% in existing datasets to just 4%. Our best model solves 34.2% of held-out competitive
programming problems in this dataset, using at most 10 submissions per problem (comparable to
humans), as opposed to previously reported solve rates of around 1-5% on existing datasets (see
Section 5.4).
To further validate our results, we evaluated AlphaCode on simulated programming competitions
hosted on the popular Codeforces platform2 (Section 5.1). In the evaluation of 10 recent contests
with over 5,000 participants each, AlphaCode achieved an average ranking within the top 54.3%.
Based on these results, we estimate that our system has achieved a Codeforces rating3 of 1238 which
is within the top 28%4 of users who have participated in a contest in the last 6 months (Figure 1)

1The dataset is located at https://github.com/deepmind/code_contests.
2https://codeforces.com/
3The rating system is similar to the classic Elo score and is primarily explained in three blog posts: 1, 2, and 3
4AlphaCode’s overall rating percentile is better than its per-contest percentile. We hypothesise that higher rated

competitors compete more regularly than lower rated competitors, and therefore the group ranking above AlphaCode in
contests is relatively more stable than the group ranking below.

3
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Are LLMs a job security threat to programmers?

Limitations and Discussion

46

• How much of a programmer's job can current language models automate?

• Relatively very little! Most time in actual 
software engineering is not spent writing code

• Chart shows just time spent with IDE open.
A lot more happens outside that time
(talking, prioritizing, meetings)

• A ton of time deciding & discussing what to build
rather than actually building it

• Even when coding, much of it is editing rather than
writing new code

[Minelli et al, 2015]

▶ Answer: not yet!
▶ Programming is more than writing lines of code:

problem-solving, strategic planning, and
creativity—abilities that, AI cannot fully replicate yet
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LLMs that code: summary

▶ (+) Works well on self-contained, short problems

▶ (-) Public code repositories have lots of code with bugs

▶ (-) Generated code often has functional or security bugs. Still
need to understand it!
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Thanks
LLMs: Exciting opportunites for applying NLP to real world settings
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